1	Student Findings
2	References
3	Assistant Secretary for Public Affairs. (2013, September 6). System usability scale (SUS).
4	Usability.gov. https://www.usability.gov/how-to-and-tools/methods/system-usability-
5	scale.html
6	Assistant Secretary for Public Affairs. (2014, May 15). Running a Usability Test.
7	https://www.usability.gov/how-to-and-tools/methods/running-usability-tests.html.
8	Bauman, E. B. (2016). Games, virtual environments, mobile applications and a futurist's
9	crystal ball. Clinical Simulation in Nursing, 12(4), 109–114.
10	https://doi.org/10.1016/j.ecns.2016.02.002
11	Bauman, E. B., Adams, R. A., Pederson, D., Vaughan, G., Klompmaker, D., Wiens, A.,
12	Squire, K. (2014). Building a better donkey: A game-based layered learning approach to
13	veterinary medical education. In GLS 10 Conference Proceedings (pp. 372–375).
14	Pittsburgh, PA: Carnegie Mellon University ETC Press.
15	Bauman, E. B., Gilbert, G. E., & Vaughan, G. (2017). Short-term gains in histology
16	knowledge: A veterinary gaming application. PeerJ Preprints, 5, e3421v1.
17	https://doi.org/https://doi.org/10.7287/peerj.preprints.3421v1
18	Bauman, E. B., Ralston-Berg, P., & Gilbert, G. E. (2018). Nexus of Game Development:
19	Curricular Integration and Faculty Development. In R. M. Gordon & D.
20	McGonigle (Eds.), Virtual Simulation in Nursing Education (pp. 113-125). Springer
21	Publishing Co.

Bjork, I. & Kirkevold, M. (1999). Issues in nurses' practical skill development in the clinical 22 setting. Journal of Nursing Care Quality, 14(1), 72–84. 10.1097/00001786-199910000-23 00009 24 25 Butt, A. L., Kardong-Edgren, S., & Ellertson, A. (2018). Using game-based virtual reality with haptics for skill acquisition. Clinical Simulation in Nursing, 16, 25–32. 26 27 https://doi.org/10.1016/j.ecns.2017.09.010 Cant, R., Cooper, S., Sussex, R., & Bogossian, F. (2019). What's in a name? Clarifying the 28 nomenclature of virtual simulation. Clinical Simulation in Nursing, 27, 26–30. 29 30 https://doi.org/10.1016/j.ecns.2018.11.003. Chang, T. P., & Weiner, D. (2016). Screen-based simulation and virtual reality for pediatric 31 emergency medicine. Clinical Pediatric Emergency Medicine, 17(3), 224–230. 32 https://doi.org/10.1016/j.cpem.2016.05.002 33 Dang, B. K., Palicte, J. S., Valdez, A., & O'Leary-Kelley, C. (2018). Assessing simulation, 34 virtual reality, and television modalities in clinical training. Clinical Simulation in 35 Nursing, 19, 30–37. https://doi.org/10.1016/j.ecns.2018.03.001 36 Fisher, R. A. (1956). The Design of Experiments (1935). Mathematics of a Lady Tasting Tea. 37 In J. R. Newman (Ed.), The World of Mathematics, Volume III, Part VIII (pp. 1514– 38 1521). Mineola, NY: Courier Dover Publications. 39 40 Freeman, J. V., & Campbell, M. J. (2007). The analysis of categorical data: Fisher's exact test. Scope, 33(5), 11–12. https://doi.org/10.2337/dc09-1830. 41 Gonzalez, L., & Soles, L. (2014). Urinary catheterization skills: One simulated checkoff is not 42 enough. Clinical Simulation in Nursing, 10(9), 455–460. 43 https://doi.org/10.1016/j.ecns.2014.07.002 44

45	Guillaume, M., Bragard, I., & Ghuysen, A. (2020). Virtual reality experience: Immersion,
46	sense of presence, and cybersickness. Clinical Simulation in Nursing, 38, 35-43.
47	https://doi.org/10.1016/j.ecns.2019.09.006
48	Infographic: What is extended reality (XR)? (2019, March 12). Visual
49	Capitalist. https://www.visualcapitalist.com/extended-reality-xr
50	Kardong-Edgren, S., Farra, S.L., Alinier, G., & Young, H.M. (2019). A call to unify
51	definitions of virtual reality. Clinical Simulation in Nursing, 31, 28–34.
52	https://doi.org/10.1016/j.ecns.2019.02.006
53	Kardong-Edgren, S., & Mulcock, P. (2016). Angoff Method of setting cut scores for high-
54	stakes testing: Foley catheter checkoff as an exemplar. Nurse Educator, 41(2), 80-82.
55	10.1097/NNE.000000000000218
56	Kardong-Edgren, S., Breitkreuz, K., Werb, M., Foreman, S., & Ellertson, A. (2019).
57	Evaluating the usability of a second-generation VR game for refreshing sterile urinary
58	catheterization skills. Nurse Educator, 44(3), 137–141. doi:
59	10.1097/nne.000000000000570
50	Kirkpatrick, D. L. (1970). Evaluation of training. In P. L. Browning (Ed.), Evaluation of short
61	term training in rehabilitation (pp. 35–57). University of Oregon.
52	Offiah, G., Ekpotu, E., Murphy, S., Kane, D., Gordon, A., O'Sullivan, M., Sharifuddin, S. F.,
63	Kill, A. D. K., & Condron, C.M. (2019). Evaluation of medical student retention of
64	clinical skills following simulation training. BMC Medical Education, 19, 263. Available
55	at https://doi.org/10.1186/s12909-019-1663-2

66	Pearson, K. (1900). X. On the criterion that a given system of deviations from the probable in
67	the case of a correlated system of variables is such that it can be reasonably supposed to
68	have arisen from random sampling. Philosophical Magazine Series 5, 50(302), 157-175.
69	https://doi.org/10.1080/14786440009463897
70	Prensky, M. (2001). Digital natives, digital immigrants. On the Horizon, 9(5), 1-6.
71	https://doi.org/10.1108/10748120110424816
72	Rasmussen, N. (n.d.). Top 10 incredible uses of VR in healthcare. VR Magazine.
73	https://vrtodaymagazine.com/vr-healthcare/
74	Saint, S. (2009). Catheter-associated urinary tract infection and the Medicare rule
75	changes. Annals of Internal Medicine, 150(12), 877. https://doi.org/10.7326/0003-4819-
76	150-12-200906160-00013
77	Sauro, J. (2011, February 2). Measuring usability with the System Usability Scale (SUS).
78	MeasuringU. https://measuringu.com/sus/
79	Servotte, J., Goosse, M., Campbell, S.H., Dardenne, N., Pilote, B., Simoneau, I.L., Guillaume
80	M., Bragard, I., & Ghuysen, A., (2020). Virtual reality experience: Immersion, sense of
81	presence, and cybersickness. Clinical Simulation in Nursing, 38, 35-43.
82	https://doi.org/10.1016/j.ecns.2019.09.006.
83	SIMX. (n.d.). SimX VR and AR Medical Simulation – The most advanced medical simulation
84	software on the market. https://www.simxar.com/
85	Smith, P. C., & Hamilton, B. K. (2015). The effects of virtual reality simulation as a teaching

86	strategy for skills preparation in nursing students. Clinical Simulation in Nursing, 11(1),
87	52-58. https://doi.org/10.1016/j.ecns.2014.10.001
88	User experience basics. (2014, February 19). Usability.gov. https://www.usability.gov/what-
89	and-why/user-experience.html
90	Wasserstein, R. L., Schirm, A. L., & Lazar, N. A. (2019). Moving to a world beyond
91	"p<0.05." The American Statistician, 73(sup1), 1–19.
92	https://doi.org/10.1080/00031305.2019.1583913
93	Weech, S., Kenny, S., Barnett-Cowan, M. (2019). Presence and cybersickness in virtual reality
94	are negatively related: A review. Frontiers in Psychology, Retrieved on the WWW from
95	https://www.frontiersin.org/articles/10.3389/fpsyg.2019.00158/full
96	Weinstein, Y., Sumeracki, M., & Caviglioli, O. (2018). Understanding how we learn: A visual
97	guide. Routledge.
98	Witmer, B.G., & Singer, M.J. (1998). Measuring presence in virtual environments: A presence
99	questionnaire. Presence, 7(3), 225–240. http://doi.org/10.1162/105474698565686
100	
101	Acknowledgements
102	The authors would like to thank the students in the Boise State Games Interactive Media
103	and Mobile (GIMM) program who were contributors to game development. We would also like
104	to thank all departments at Boise State University that contributed to the growth of the GIMM
105	program.
106	Funding
107	The authors received no funding for conducting this research.

Table 1. Student characteristics associated with perceptions of game usability in a sample (n=300) of pre-licensure nurses from nine institutions across the United States

Student characteristics	P value
Positive association between male gender and usability	<.0001
Gaming during one's free time associated with usability	.0391
Self-identifying as a gamer associated with usability	.0608
Snapchat® use associated with usability	.1127
Online gaming appeared to be associated with usability	.1686
Other social media associated with usability	.2924
Using Facebook, Instagram, Twitter not associated	.5000
Console gaming not associated with usability	.7572
No differences by age	.7889
GPA not associated with usability	.9943

Table 2a. User Reaction Scale Part 1 in a sample (n=300) of pre-licensure nurses from nine institutions across the United States

Positive Emotions	Strongly Disagree	Disagree	Neither Agree nor Disagree	Agree	Strongly Agree
Practicing this way was fun.	3%	2%	9%	40%	45%
Wearing the headgear did not bother me.	3%	11%	8%	36%	41%
I felt engaged in my own learning while practicing.	2%	5%	15%	40%	39%
Using this technology motivated me to keep practicing.	4%	8%	18%	44%	26%
I got the feedback I needed when I needed it.	5%	11%	19%	41%	24%
At times during the hour, I felt totally absorbed in practicing.	4%	9%	19%	44%	23%
I lost track of time while practicing.	6%	9%	18%	46%	22%
There were elements of challenge within the game.	3%	3%	15%	58%	21%
Will help me insert a urinary catheterization correctly.	9%	15%	22%	36%	19%
I will be more likely to practice catheter insertion.	13%	13%	32%	29%	14%
I found my way around the game easily.	5%	19%	19%	44%	13%
It was easy to concentrate on aseptic technique.	14%	29%	15%	30%	13%
I worked to improve my score and my practice time.	8%	14%	44%	21%	12%

Table 2b. User Reaction Scale Part 2 in a sample (n=300) of pre-licensure nurses from nine institutions across the United States

Negative Emotions	Strongly Disagree	Disagree	Neither Agree nor Disagree	Agree	Strongly Agree
I did not find any challenge within this game.	21%	50%	14%	13%	2%
Difficult to concentrate on maintaining aseptic technique.	12%	31%	15%	27%	16%
Practicing this way is boring.	52%	37%	8%	2%	1%
Practicing this way was not engaging.	46%	39%	10%	4%	1%
I found practicing this way frustrating.	15%	24%	21%	29%	10%
At no time was I absorbed in the game.	30%	42%	18%	6%	4%
The headgear was uncomfortable.	35%	36%	13%	10%	6%
I would rather practice on a task trainer.	7%	19%	33%	26%	15%
I found myself wondering when I could stop playing.	35%	38%	15%	9%	3%
I did not enjoy practicing this way.	39%	35%	15%	8%	3%
It made me dizzy or nauseous.	49%	27%	12%	9%	2%

Faculty Paper References

- Bauman, E. B. (2016). Games, virtual environments, mobile applications and a futurist's crystal ball. *Clinical Simulation in Nursing*, *12*(4), 109–114. https://doi.org/10.1016/j.ecns.2016.02.002
- Bauman, E., Adams, R. A., Pederson, D., Vaughan, G., Klompmaker, D., Wiens, A., ... Schilder,
 K. (2014). GLS 10. In *Building a Better Donkey: A Game-Based Layered Learning*Approach to Veterinary Medical Education (pp. 372–375). Pittsburg, PA; Carnegie Mellon
 University ETC Press.
- Bauman, E. B., Gilbert, G. E., & Vaughan, G. (2017). Short-term gains in histology knowledge:

 A veterinary gaming application. *PeerJ Preprints*, *5*, e3421v1.

 https://doi.org/https://doi.org/10.7287/peerj.preprints.3421v1
- Bauman, E. B., Ralston-Berg, P., & Gilbert, G. E. (2018). Nexus of Game Development:
 Curricular Integration and Faculty Development. In R. M. Gordon & D.
 McGonigle (Eds.), Virtual Simulation in Nursing Education (pp. 113-125). Springer
 Publishing Co.
- Bauman, E. B., Ralston-Berg, P., & Gilbert, G. E. (2018). Nexus of Game Development:
 Curricular Integration and Faculty and professionals Development. In R. M. Gordon & D.
 McGonigle (Eds.), Virtual Simulation in Nursing Education (pp. 113-125). Springer
 Publishing Co.

- Breitkreuz, K. R., Kardong-Edgren, S., Gilbert, G. E., DeBlieck, C., Maske, M., Hallock, C., ...

 Noe, S. R. (2020). *Usability of a virtual reality game designed to improve retention of sterile catheterization skills: A multisite study. Usability of a virtual reality game designed to improve retention of sterile catheterization skills: A multisite study.* [Manuscript submitted for publication]. Harris College of Nursing, Texas Christian University.
- Butt, A. L., Kardong-Edgren, S., & Ellertson, A. (2018, March). Using game-based virtual reality with haptics for skill acquisition. *Clinical Simulation in Nursing*, *16*(C), 25-32. https://doi.org/10.1016/j.ecns.2017.09.010.
- Faes, M. L., Liu, X., Wagner, S. K., Fu, D., Balaskas, K., Sim, D. A., Bachmann, L. M., Keane,
 P.A., Denniston, A. K. (2020). A clinician's guide to artificial intelligence: How to
 critically appraise machine learning studies. *Translational Vision Science and Technology*, 9(2), Article 7. doi:https://doi.org/10.1167/tvst.9.2.7
- Galanek, J. D., Gierdowski, D. C.& Brooks, C. D. (2018). ECAR Study of Undergraduate

 Students and Information Technology. ECAR Research report. Louisville, CO.
- Hanson, J., Andersen, P., & Dunn, P. K. (2019). Effectiveness of three-dimensional visualisation on undergraduate nursing and midwifery students' knowledge and achievement in pharmacology: A mixed methods study. *Nurse Education Today*, 81, 19–25. https://doi.org/10.1016/j.nedt.2019.06.008
- Jenson, C. E., Forsyth, D. M. N. & McNally, D. (2012). Virtual reality simulation: Using three-dimensional technology to teach nursing students. *Computers in Nursing*, 30(6), 312-318.
- Lioce L. (Ed.)., Downing D., Chang T. P., Robertson J. M., Anderson M., Diaz, D. A., and Spain A. E. (Assoc. Eds.). and the Terminology and Concepts Working Group (2020),

- Healthcare Simulation Dictionary –Second Edition. Rockville, MD: Agency for Healthcare Research and Quality; January 2020. AHRQ Publication No. 20-0019. DOI: https://doi.org/10.23970/simulationv2.
- McGaghie, W. C., Issenberg, S. B, Cohen, E. R., Barsuk, "J. H., & Wayne, D. B. (2011). Does simulation-based medical education with deliberate practice yield better results than traditional clinical education? A meta-analytic comparative review of the evidence.

 **Academic Medicine*, 86(6), 706-711. doi: 10.1097/ACM.0b013e318217e119
- McGaghie, W. C., Issenberg, S. B., Petrusa, E. R., Scalese, R. (2010). A critical review of simulation-based medical education research: 2003-2009. *Medical Education*, 44, 50-63. doi.org/10.1111/j.1365-2923.2009.03547.x
- Moore, B. (2020, May 11). *The Best VR Games for 2020*. PCMAG. https://www.pcmag.com/feature/362099/the-best-vr-games-for-2019/27.
- Moran, J., Briscoe, G., & Peglow, S. (2018). Current technology in advancing medical education: Perspectives for learning and providing care. *Academic Psychiatry*, 42, 796-799. Doi: https://doi.org/10.1007/s40596-018-0946-y
- Miller, H. L., & Bugnariu, N. L. (2016). Level of immersion in virtual environments impacts the ability to assess and teach social skills in Autism Spectrum Disorder. *Cyberpsychology, Behavior, and Social Networking*, *19*(4), 246–256.

 https://doi.org/10.1089/cyber.2014.0682
- Oxford Medical Simulation Ltd. (Eds.). (2020, April 26). *Virtual Reality Healthcare Training*.

 Oxford Medical Simulation. https://oxfordmedicalsimulation.com/.

- Pottle, J. (2019). Virtual reality and the transformation of medical education. *Future Healthcare Journal*, 6(3), 181-185. doi: 10.7861/fhj.2019-0036
- Prensky, M. (2001). Digital natives, digital immigrants. *On the Horizon*, *9*(5), 1-6. https://doi.org/10.1108/10748120110424816
- Prensky, M. (2010). Teaching digital natives: partnering for real learning. (pp. 9-29). Thousand
 Oaks, CA" Corwin Press. Retrieved from the WWW at
 https://faculty.ontariotechu.ca/kay/coursefiles/educ5303g/readings/Prensky_2010_Partner
 ing.pdf
- Rizzo, A. S., & Koenig, S. T. (2017). Is clinical virtual reality ready for primetime? Neuropsychology, 31(8), 877–899. https://doi.org/10.1037/neu0000405
- Rourke, S. (2020). How does virtual reality simulation compare to simulated practice in the acquisition of clinical skills for pre-registration student nurses? A systematic review. *International Journal of Nursing Studies*, 102, 103466.

 doi.org/10.1016/j.ijnurstu.2019.103466doi.org/10.1016/j.nurstu.2019.103466.
- Sahin, I. & Thompson, A. (2007). Analysis of predictive factors that influence faculty and professional members' technology adoption level. *Journal of Technology and Teacher Education*, 15(2), 167-190. Retrieved May 25, 2020 from https://www.learntechlib.org/primary/p/18935/.
- Samorsorn, A. B., Gilbert, G. E., Bauman, E. B., Khine, J., McGonigle, D. (2020). Teaching airway insertion skills to nursing faculty and students using virtual reality: A pilot study. *Clinical Simulation in Nursing*, 39(2), 18-26. doi: 10.1016/j.ecns.2019.10.004
- Scribani, J. (2019). Infographic: What is extended reality(XR)? Retrieved from the WWW https://www.visualcapitalist.com/extended-reality-xr/

- SimX Inc. (2020, May 23). *The most advanced medical simulation software on the market*. SimX VR and AR Medical Simulation. https://www.simxar.com/.
- Slater, M. (2009). Place illusion and plausibility can lead to realistic behaviour in immersive virtual environments. Philosophical Transactions of the Royal Society, 364, 3549-3557. doi:10.1098/rstb.2009.0138
- Steuer, J. (1992). Defining virtual reality, dimensions determining telepresence. *Journal of Communication*, 42(4), 73-93.
- System Usability Scale. Retrieved from https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html
- Tindall-Ford, S., Martin, A. J., & Evans, P. (2020). Chapter 2. In *Advances in cognitive load theory: rethinking teaching* (pp. 15–29). essay, Routledge.
- Witmer, B. G., & Singer, M. J. (1998). Measuring presence in virtual environments: A presence questionnaire. *Presence*, 7(3), 225-240. doi.org/10.1162/105474698565686

Table 1: Participants Reporting Age Range

Age Range	Participants	
Age Nange	(n=36)	
25-30	9	
31-35	4	
36-40	2	
41-45	3	
45-50	7	
51-55	7	
56-60	4	

Table 2. Non-student characteristics associated with perceptions of game usability

Non-student characteristics (n=36)	P value
Snapchat	.0030
Graduation decade (1970s to 2010s) positively associated	.0045
with usability	
Age was associated with usability	.0362
50% (n=18)-low usability	
25% (n=9) medium usability	
25% (n=9) high usability	
Self-identifying as a gamer associated with usability	.0874
Twitter	.1125
Use of social media associated with usability	.1684
Console gaming associated with usability	.1748
Instagram	.2213
Gaming during one's free time associated with usability	.2914
Facebook use not associated	.7770
Online gaming not associated with usability	.9512
No association between gender and usability	1.00

Table 3: Questions correlating with positive perceptions (n=46) Scale: $l=Strongly\ Disagree,\ 2=Disagree,\ 3=Neither\ Agree \ nor\ disagree,\ 4=Agree,\ and\ 5=Strongly\ agree.$

	Percentage who Strongly Agree &	
Positive questions	Agree	Mean Score
Wearing the headgear did not bother me	84.1	4.30
There were elements of challenge within the game	79.5	3.95
Practicing this way was fun	77.3	3.86
I lost track of time while practicing	68.2	3.64
I felt engaged in my own learning while practicing	65.9	3.66
At times during the hour, I felt totally absorbed in practicing	63.6	3.66
I got the feedback I needed when I needed it	61.3	3.70
Using this technology motivated me to keep practicing	47.8	3.34
I worked to improve my score and my practice time	45.5	3.00
I found my way around the game easily	43.2	2.89
Will help me insert a urinary catheter correctly	36.4	2.77
I will be more likely to practice catheter insertion this way		
than on a task trainer	31.8	2.82
It was easy to concentrate on aseptic technique	20.5	2.39

Table 4: Questions correlating with negative perceptions (n=46) Scale: I= Strongly Disagree, 2=Disagree, 3=Neither Agree nor disagree, 4=Agree, and 5= Strongly agree.

	Percentage who	
	Disagree & Strongly	
Negative questions	Disagree	Mean
I did not find any challenge within this game	84.1	1.82
Practicing this way was not engaging	84.1	1.8
At no time was I absorbed in the game	81.9	2.02
Practicing this way is boring	79.5	1.8
The headgear was uncomfortable	77.2	1.89
Difficult to concentrate on maintaining aseptic technique	65.9	1.8

It made me dizzy or nauseous	65.9	2.2
I did not enjoy practicing this way	56.8	2.52
I found practicing this way frustrating	54.5	3.34
I found myself wondering when I could stop playing	47.7	2.68
I would rather practice on a task trainer	27.3	3.2